Now, for the next statement : __The number of squares equals the number of all the natural numbers.__ This seems odd, because as we continue in the series of all the natural numbers ..See Fig. 3 below

the squares (underlined) occur less and less often. Still if we use Cantor’s matching principle of set theory we find :that the ‘infiniteness’ of the ‘square numbers’ corresponds one-to-one to the degree of infinity of the natural numbers which is the ‘countable infinity’ or

This helped Cantor resolve the Galileo’s paradox stated above – the number of points on the center, the smaller circle or any bigger circle all belong to ‘countable infinite’ rays.

- As we said earlier, Cantor pushed his mathematical reflections on set theory and the ‘infinitely many’ further. He showed that there exist sets with an ‘infiniteness’ which is ‘beyond countability’ i.e. these sets have a degree of infinity that is higher than
**א**!_{0}

For this purpose, Cantor used a line segment as a measure for ‘real numbers’. Whereas ‘natural numbers’ belong to the sequence 0, 1, 2, 3, 4, and so on, the ‘real numbers’ are those which are integers with a decimal placed between them somewhere e.g. 1.291 or 0.3125 or 365.89 and so on and so forth. These are also known as decimal numbers. In real life, we use ‘real numbers’ for measurements, weights, scientific calculations, cash transactions etc.

The two aksharas , ‘a’ ( A ) and ‘h’ ( h ) are the first and the last letters of the alphabet respectively. The latter is the last of the Sibilants or the Shakti symbols. It is the...

At this stage it becomes important to remember that science is concerned only with observable things and that we can observe an object only by letting it interact with some outside...